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Abstract. An n-sided die is an n-tuple of positive integers. We say that a die (a1, . . . , an) beats a
die (b1, . . . , bn) if the number of pairs (i, j) such that ai > b j is greater than the number of pairs
(i, j) such that ai < b j. We show that for a natural model of random n-sided dice, if A, B and C
are three random dice then the probability that A beats C given that A beats B and B beats C is
approximately 1/2. In other words, the information that A beats B and B beats C has almost no
effect on the probability that A beats C. This proves a statement that was conjectured by Conrey,
Gabbard, Grant, Liu and Morrison for a different model.

1. Introduction

It is an amusing fact, first observed by Bradley Efron in the 1960s, that there can be four
dice A0, A1, A2, A3, each with six sides but with non-standard numberings such that if they are all
rolled, then each of the four events “Ai shows a higher number than Ai+1” occurs with probability
2/3 (where i + 1 is interpreted mod 4). Thus, if we say that one die beats another if it has a
better-than-50% chance of showing a higher number, then the relation “beats” is not transitive.

Much more recently, Conrey, Gabbard, Grant, Liu and Morrison decided to investigate how
common a phenomenon intransitivity is. They defined a notion of random n-sided dice, defined
a suitable relation “beats” for such dice, and did some computer experiments that indicated, to
their surprise, that if A, B and C are three random dice, then the probability that A beats C given
that A beats B and B beats C is, for large n, approximately equal to 1/2. That is, the information
that A beats B and B beats C gives almost no clue about whether A beats C.

The definition they gave of a random n-sided die, which we shall refer to as the multiset model,
is as follows: they define an n-sided die to be a multiset with n elements that add up to n(n + 1)/2
(or equivalently average (n + 1)/2), and a random n-sided die is simply an n-sided die chosen
uniformly at random. An equivalent definition is that a random n-sided die is a random non-
decreasing sequence (a1, . . . , an) of positive integers between 1 and n that add up to n(n + 1)/2.
For example, the 4-sided dice are (1, 1, 4, 4), (1, 2, 3, 4), (1, 3, 3, 3), (2, 2, 2, 4), and (2, 2, 3, 3).

Given two random n-sided dice A = (a1, . . . , an) and B = (b1, . . . , bn), we say that A beats B
if the number of pairs (i, j) such that ai > b j is greater than the number of pairs (i, j) such that
ai < b j. For example, the die A = (1, 1, 4, 4) beats the die B = (1, 3, 3, 3) because there are eight
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pairs (i, j) with ai > b j and only six with ai < b j. If the two numbers are equal we say that A ties
with B.

Conrey, Gabbard, Grant, Liu and Morrison made the following two conjectures.
{ties}

Conjecture 1.1. Let n be a positive integer and let A and B be independent random n-sided dice
in the multiset model. Then the probability that A ties with B is o(1).

{transitive}

Conjecture 1.2. Let n be a positive integer and let A, B and C be independent random n-sided
dice in the multiset model. Then the probability that A beats C given that A beats B and B beats
C is 1

2 + o(1).

They also conjectured a strengthening of Conjecture 1.2, which is the following. Recall that a
tournament is a complete graph for which every edge is given a direction. We shall regard it as a
set T of ordered pairs of distinct elements of a set V such that for any two distinct elements v,w
of V exactly one of (v,w) or (w, v) belongs to T .

{quasirandom}

Conjecture 1.3. Let T be a tournament with vertices 1, 2, . . . , k. Then if A1, . . . , Ak are indepen-
dent random n-sided dice in the multiset model, then the probability that for each 1 ≤ i < j ≤ k
we have that Ai beats A j if and only if (i, j) ∈ T is 2−(

k
2) + o(1).

The conclusion about the tournament T is stating that it is quasirandom in a sense introduced
by Chung and Graham [?]. It turns out to be equivalent to the statement that for all but a fraction
o(1) of the pairs of vertices x, y, the fraction of vertices z such that either (x, z) and (y, z) belong
to T or (z, x) and (z, y) belong to T is 1

2 + o(1). There are many different equivalent conditions
for quasirandomness: the one conjectured to hold by Conrey, Gabbard, Grant, Liu and Morrison
states that all small tournaments occur in T with approximately the frequency one would expect
in a random tournament.

Conrey, Gabbard, Grant, Liu and Morrison also looked at other models, and the experimental
evidence was surprisingly sensitive to the model chosen, with Conjecture 1.2 (and hence also
Conjecture 1.3) appearing to be false for most of them. However, there was one other model for
which it seemed to be true, which we shall refer to as the balanced sequences model. Here an
n-sided die is simply a sequence (a1, . . . , an) of elements of {1, 2, . . . , n} that adds up to n(n+1)/2
and a random n-sided die is an n-sided die chosen uniformly at random. Note that permuting a
sequence does not affect which other sequences it beats. If we say that two dice that are permu-
tations of one another are equivalent, then the difference between the balanced sequences model
and the multiset model is that the multiset model gives the same weight to each equivalence class,
while the balanced sequences model gives the same weight to each individual sequence.
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The main results of this paper are that Conjectures 1.1 and 1.2 are true for the balanced se-
quences model. We also report on experimental evidence that suggests that the stronger conjec-
ture, Conjecture 1.3 is false for both models.

The method of proof can be summarized as follows. We begin by showing that Conjecture 1.2
is equivalent to the statement that almost every random die beats approximately half the other
dice and is beaten by approximately half the other dice (and therefore ties with almost no dice).
We then argue that unless a die A has a very “atypical” distribution, then it is indeed the case that
it beats approximately half the other dice and is beaten by approximately half the other dice. We
can regard this last statement as the claim that if (b1, . . . , bn) is a random sequence of elements
of {1, 2, . . . , n}, then the probability that it is beaten by A given that it sums to n(n + 1)/2 is
approximately 1/2, as is the probability that it beats A given the same condition. It turns out
that this is true provided that a certain sum of independent random variables with values in Z
is sufficiently close to a discrete Gaussian distribution. In order to prove this, we need a rather
explicit quantitative local central limit theorem, which we prove by standard Fourier-analytic
means, using probabilistic arguments to prove that the behaviour we need the Fourier transform
(or characteristic function) to satisfy holds for almost all dice A.

This paper is the result of an open online collaboration between several authors. A complete
record of the discussion that led to its existence can be found in a series of five consecutive blog
posts and comments on them, of which the first is https://gowers.wordpress.com/2017/
04/28/a-potential-new-polymath-project-intransitive-dice/. The posts belong
to a category entitled polymath13.

2. The preliminary reduction
{reduction}

We begin with a lemma about tournaments, or rather about near tournaments, by which we
mean directed graphs with n vertices and (1 − o(1))

(
n
2

)
edges. Given a triple of vertices (x, y, z),

we shall call it intransitive if the subgraph induced by the three vertices is a directed cycle of
length 3, and transitive if it is a triangle but not a directed 3-cycle. The out-degree d+(x) of a
vertex x is the number of vertices y such that (x, y) is an edge, and the in-degree d−(x) is the
number of vertices y such that (y, x) is an edge.

{equivalent}

Lemma 2.1. Let T be a directed graph with n vertices and (1−o(1))
(

n
2

)
edges. Then the following

two statements are equivalent.

(1) The probability that a random triple of vertices is intransitive is 1
4 + o(1).

(2) If x is a random vertex, then with probability 1 − o(1) d+(x) = (1
2 + o(1))n.

https://gowers.wordpress.com/2017/04/28/a-potential-new-polymath-project-intransitive-dice/
https://gowers.wordpress.com/2017/04/28/a-potential-new-polymath-project-intransitive-dice/
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Proof. Write x → y if (x, y) is an edge of T . First let us count the number of triples (x, y, z)
such that x → y → z. A directed triangle xyz in T gives rise to three such triples, namely
(x, y, z), (y, z, x) and (z, x, y). Any other triangle gives rise to just one: for example, if x → y,
x → z and y → z, then the only triple we obtain is (x, y, z). Since the number of triangles is
(1 − o(1))

(
n
3

)
, we find that the number of triples (x, y, z) such that x→ y→ z is (1 − o(1))

(
n
3

)
plus

twice the number of directed triangles. Note that
(

n
3

)
= (1 + o(1))n3/6.

But the number of such triples is also
∑

y d+(y)d−(y). Since the number of edges is (1−o(1))
(

n
2

)
,

this is equal to (1 + o(1))
∑

y d+(y)(n − d+y). Also,
∑

y d+(y) = (1 − o(1))
(

n
2

)
= (1 − o(1))n2/2,

so this is (1 + o(1))(n3/2 −
∑

y d+(y)2). Therefore, twice the number of directed triangles is
(1 + o(1))(n3/3 −

∑
y d+(y)2).

If a random triple of vertices has a probability 1
4 + o(1) of being intransitive, then twice the

number of directed triangles is also ( 1
2 + o(1))

(
n
3

)
= ( 1

12 + o(1))n3. It follows that
∑

y d+(y)2 =

( 1
4 +o(1))n3, and therefore that Eyd+(y)2 = ( 1

4 +o(1))n2. But Eyd+(y) = ( 1
2 +o(1))n, so var(d+(y)) =

o(n2), which implies that d+(y) = (1
2 + o(1))n with probability 1 − o(1).

The steps in the previous paragraph can also be reversed, so the lemma is proved. �

3. A random variable related to an n-sided die and a second reduction
{rvs}

Write [n] for the set {1, 2, . . . , n}. Given an n-sided die A = (a1, . . . , an) (in fact the definition
we are about to give applies to any sequence in [n]n) we define a cumulative distribution function
fA by

fA( j) = |{i ∈ [n] : ai < j}| +
1
2
|{i ∈ [n] : ai = j}|.

We typically expect fA( j) to be around j − 1
2 , so it is convenient also to define a function gA by

gA( j) = fA( j)− j + 1
2 . For a fixed A, we shall be interested in the random variable (gA( j), j− (n +

1)/2), which is defined on [n]. More precisely, we choose j uniformly from [n] and evaluate the
pair (gA( j), j − (n + 1)/2).

To see why this is useful to look at, let us do a few simple calculations.
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First of all, ∑
j

fA( j) =
∑

j

∑
i

(
1[ai< j] +

1
2
1[ai= j]

)
=

∑
i

∑
j

(
1[ai< j] +

1
2
1[ai= j]

)
=

∑
i

(n − ai + 1/2)

= n2/2,

where the last equality follows from the fact that A is an n-sided die and therefore
∑

i ai =

n(n + 1)/2. This gives us that∑
j

gA( j) = n2/2 −
∑

j

( j − 1/2) = n2/2 − n(n + 1)/2 + n/2 = 0,

and therefore that the mean of the random variable (gA( j), j − (n + 1)/2) is (0, 0).
Next, let B = (b1, . . . , bn) be another n-sided die. Then∑

j

fA(b j) =
∑

j

∑
i

(
1[ai<b j] +

1
2
1[ai=b j]

)
=

∣∣∣{(i, j) : ai < b j}
∣∣∣ +

1
2

∣∣∣{(i, j) : ai = b j}
∣∣∣.

But ∑
j

gA(b j) =
∑

j

( fA(b j) − b j + 1/2) =
∑

j

fA(b j) − n2/2,

where the last inequality follows from the fact that
∑

j b j = n(n + 1)/2. It follows that∑
j

gA(b j) =
∣∣∣{(i, j) : ai < b j}

∣∣∣ +
1
2

∣∣∣{(i, j) : ai = b j}
∣∣∣ − n2/2.

Since there are n2 pairs (i, j), this tells us that
∑

j gA(b j) > 0 if and only if∣∣∣{(i, j) : ai < b j}
∣∣∣ +

1
2

∣∣∣{(i, j) : ai = b j}
∣∣∣ > ∣∣∣{(i, j) : ai > b j}

∣∣∣ +
1
2

∣∣∣{(i, j) : ai = b j}
∣∣∣,

which is true if and only if B beats A. Similarly A beats B if and only if
∑

j gA(b j) < 0.
We will therefore be done if we can prove the following claim.

{main}

Claim 3.1. If A is a random n-sided die, then with probability 1−o(1) we have that the proportion
of n-sided dice B = (b1, . . . , bn) with

∑
j gA(b j) > 0 is 1

2 + o(1).
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The proof that this claim is sufficient requires one small observation. Given a die A =

(a1, . . . , an), define the complementary die A to be the sequence (n + 1 − a1, . . . , n + 1 − an).
Then A beats B if and only if B beats A. So if the claim is true, then with probability 1 − o(1),
the proportion of B such that A beats B is 1

2 + o(1) and the proportion of B such that A beats B is
also 1

2 + o(1), which implies that the proportion of B such that A ties with B is o(1).

4. A heuristic argument for Claim 3.1

We begin by explaining why one would expect Claim 3.1 to be true. Once we have done that,
we shall turn our heuristic argument into a rigorous one. It is at that point that we shall need to
prove a local central limit theorem with sufficiently explicit bounds.

Let (b1, . . . , bn) be a purely random sequence belonging to [n]n – that is, one where the bi are
chosen uniformly and independently from [n] and there is no restriction on the sum. Then to
prove Claim 3.1 for a fixed A we need to show that

P
[∑

j

gA(b j) > 0
∣∣∣∣ ∑

j

b j = n(n + 1)/2
]

=
1
2

+ o(1),

which is equivalent to the assertion that

P
[∑

j

gA(b j) > 0
∣∣∣∣ ∑

j

(b j − (n + 1)/2) = 0
]

=
1
2

+ o(1).

But b1, . . . , bn are uniformly and independently chosen from [n]. Thus, if we write (X j,Y j) for
the random variable (gA(b j), b j − (n + 1)/2), then (X1,Y1), . . . , (Xn,Yn) are n independent copies
of the random variable (gA( j), j − (n + 1)/2) mentioned earlier, and we are concerned with the
sum

∑n
j=1(X j,Y j), which we shall write as (X,Y).

The central limit theorem suggests that the distribution of this sum will be approximately
Gaussian, and since each (Xi,Yi) has mean (0, 0) we would in particular expect that the distri-
bution would be approximately symmetric about the origin. Also, we would expect a typical
value of gA( j) to have magnitude around

√
n, so the standard deviation of X ought to be around

n. Also Y has standard deviation of order n3/2 and the two random variables, though correlated,
will probably not be too heavily correlated.

If all these heuristics are correct, then the probability that X = 0 given that Y = 0 should be
of order n−1, and certainly o(1). The symmetry should imply that P[X > 0|Y = 0] ≈ P[X <

0|Y = 0], and these statements taken together would give us that P[X > 0|Y = 0] = 1
2 + o(1)

and P[X < 0|Y = 0] = 1
2 + o(1), which is equivalent, as we have seen, to the statement that the

proportion of dice that beat A is 1
2 + o(1) and the proportion of dice that A beats is 1

2 + o(1).
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The reason this heuristic argument cannot immediately be turned into a proof is that the central
limit theorem is too blunt a tool. There are two reasons for this. The first is that although it tells
us that a sum of i.i.d. random variables will converge to a Gaussian, it does not tell us how
fast that convergence will occur, and we need it to have occurred (to within a small error) when
we take a sum of n copies of (gA( j), j). And we cannot just let n tend to infinity because the
random variables themselves depend on n. This second problem applies not just to the central
limit theorem but also to the Berry-Esseen theorem, which gives a rate of convergence in the
central limit theorem, but with a constant that (necessarily) depends on the random variable.

A second problem is that the notion of convergence in the central limit theorem and the Berry-
Esseen theorem is not suitable for our purposes. We need to be able to estimate the probability
that (X,Y) belongs to the positive x-axis, which is a “probability zero event” from the point of
view of the central limit theorem and Berry-Esseen theorem. Instead, we need a local central
limit theorem, the name given to versions of the central limit theorem that can give us estimates
for the density function at individual values. Unfortunately, the local central limit theorems
that appear in the literature tend still to involve inexplicit constants that depend on the random
variable, again necessarily. (We did find an exception to this, but it proved a one-dimensional
theorem where we need a two-dimensional one [?].)

In the end, we have proved for ourselves a local central limit theorem that is tailored to our
application. It is not hard to prove using Fourier analysis, which is one of the standard methods
for proving such results, but it requires the random variable to have certain properties, as we
shall explain later, in order for us to be able to make the implied constant explicit. So the
rest of the proof splits into two parts: first we shall prove that the random variable (U,V) =

(gA( j), j − (n + 1)/2) has certain properties with high probability (when A is a random n-sided
die). Then we shall use those properties to establish a suitable local central limit theorem, after
which the argument will essentially be finished.

5. Properties of the random variable (U,V)

In this section we shall obtain an upper bound for ‖U‖∞, a lower bound for ‖U‖2, and an
upper bound on the size of the characteristic function of (U,V). All these bounds will hold with
probability 1 − o(1) when A is a random n-sided die in the balanced sequences model.

5.1. An upper bound for ‖U‖∞. We begin with an almost standard fact (Lemma 5.2 below),
but for convenience we provide a complete proof. (The fact and its proof could be thought of as
a weakening of a very special case of a one-dimensional local central limit theorem.) First we
prove an even more basic lemma.
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Lemma 5.1. Let In be the set {−(n−1)/2,−(n−3)/2, . . . , (n−3)/2, (n−1)/2} and let f be defined
on 1

2Z by taking f (x) = n−1 if x ∈ In and f (x) = 0 otherwise. (Thus, f (x) = P[V = x].) Then the
k-fold convolution f ∗k of f is supported on Z except if k is odd and n is even, in which case it is
supported on Z + 1

2 . In all cases, f ∗k is an even function, and its non-zero values increase when
x < 0 and decrease when x > 0.

Proof. The statements about the support and the symmetry are trivial. To prove the increasing
and decreasing properties, we note that they follow easily by induction. Indeed, let g be any even
function supported on an arithmetic progression of common difference 1 that increases towards
the middle, and let x ≥ 0. Then the inner product of g with In + x is greater than or equal to the
inner product of g with In + x + 1, since g(x − (n − 1)/2) ≥ g(x + 1 + (n − 1)/2). Therefore, g ∗ f
decreases when x is positive, and by symmetry it increases when x is negative (when we restrict
to appropriate supports). �

What we care about here is that when k = n, the maximum of f ∗n is attained at zero. And all
we really need from the next lemma is that the probability that Y = 0 is not tiny.

{probzero}

Lemma 5.2. Let (a1, . . . , an) be an element of [n]n chosen uniformly at random. Then the prob-
ability that

∑
i ai = n(n + 1)/2 is at least n−3/2/4.

Proof. The probability that
∑

i ai = n(n + 1)/2 is f ∗n(0). Equivalently, it is the probability that
Y = 0, where Y is the sum of n independent copies of V . The variance of V is at most n2/4, so the
variance of Y is at most n3/4. Therefore, by Chebyshev’s inequality, the probability that |Y | ≥ n3/2

is at most 1/4, which implies that the probability that |Y | ≤ n3/2 is at least 3/4. Since 0 is the
most likely value of Y , it follows that Y = 0 with probability at least 3/8(n3/2 + 1) ≥ n−3/2/4. �

We shall now obtain an upper bound for ‖U‖∞. Our method is to obtain an upper bound that
holds with such high probability for a purely random element of [n]n that it continues to hold
with high probability even when we condition on the sum being n(n + 1)/2.

{maxnorm}

Lemma 5.3. Let A be a random n-sided die. Then with probability 1 − 8n−9/2 we have that
max j |gA( j)| ≤ 6

√
n log n.

Proof. Let (a1, . . . , an) be a purely random sequence – that is, an element of [n]n chosen uni-
formly at random. For each j, let nA( j) be the number of i such that ai ≤ j. Note that fA( j) is the
average of nA( j − 1) and nA( j).

Now nA( j) is a sum of n independent Bernoulli random variables of mean j/n. By Chernoff’s
bounds, the probability that |nA( j) − j| ≥ m is at most 2 exp(−m2/6n). Therefore, the probability
that there exists j such that |nA( j) − j| ≥ m is at most 2n exp(−m2/6n). Setting m = 6

√
n log n,
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this is at most 2 exp(−6 log n) = 2n−6. By Lemma 5.2, if we now condition on the event that∑
i ai = n(n + 1)/2, then this probability rises to at most 8n−9/2.
If no such j exists, then for every j we have that

|(nA( j − 1) + nA( j))/2 − ( j − 1 + j)/2| ≤ 6
√

n log n,

by the triangle inequality. The left-hand side of this inequality is |gA( j)|. �

5.2. A lower bound for ‖U‖2. We begin with a lemma that we have not found in the literature
precisely as stated. However, it is similar to results such as Hoeffding’s inequality and can be
proved in essentially the same way, so it has probably been formulated before.

{deviation}

Lemma 5.4. Let c > 0, let X1, . . . , Xk be 01-valued random variables, and suppose that for every
i we have that

P[Xi = 1|X1, . . . , Xi−1] ≤ c.

Then P[
∑

i Xi ≥ (c + ε)k] ≤ e−ε
2k/4c.

Proof. Let λ > 0. Then

E(eλ(X1+···+Xk)) = E(eλ(X1+···+Xk−1)EλXk)

=
∑

t

eλtP[X1 + · · · + Xk−1 = t]E[eλXk |X1 + · · · + Xk−1 = t]

≤
∑

t

eλtP[X1 + · · · + Xk−1 = t](1 − c + ceλ)

= (1 + (eλ − 1)c)Eeλ(X1+···+Xk−1).

Therefore, by induction,

E(eλ(X1+···+Xk)) ≤ (1 + (eλ − 1)c)k ≤ eck(eλ−1).

By Markov’s inequality it follows that

P[X1 + · · · + Xk ≥ (c + ε)k] ≤ eck(eλ−1)e−λ(c+ε)k = e−ελkeck(eλ−λ−1) ≤ e(−ελ+cλ2)k,

where the last inequality uses the fact that eλ ≤ 1 + λ + λ2, which is valid if λ ≤ 1. Choosing
λ = ε/2c, we obtain an upper bound of e−ε

2k/4c. �

We shall also need to show that certain sums of independent random variables lie in certain
ranges with probability bounded away from zero. The Berry-Esseen theorem is sufficient for
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this. (More elementary approaches are possible too, but a bit more cumbersome.) The version of
the Berry-Esseen theorem we shall use is the following.

{berryesseen}

Theorem 5.5. Let X1, . . . , Xn be independent and identically distributed random variables with
EXi = 0, EX2

i = σ2 and E|Xi|
3 = ρ for each i. Let X = X1 + · · · + Xn, let x be a real number, and

let Y be a random variable with the standard normal distribution. Then∣∣∣∣P[X ≤ xσ
√

n] − P[Y ≤ x]
∣∣∣∣ ≤ ρ

2σ2
√

n
.

Berry and Esseen obtained the same theorem but with a larger absolute constant on the right-hand
side. The constant of 1/2 (in fact, slightly better) was obtained by Shevtsova [?].

{inrange}

Corollary 5.6. Let X1, . . . , Xn and X be as in the previous lemma. Then

P[µn + σ
√

n ≤ X ≤ µn + 2σ
√

n] ≥
1
8
−

ρ

σ2
√

n

and
P[µn − 2σ

√
n ≤ X ≤ µ − σ

√
n] ≥

1
8
−

ρ

σ2
√

n
.

Proof. By Theorem 5.5, the first probability differs from P[1 ≤ Y ≤ 2] by at most ρ/σ2√n. But
a standard normal lies in the interval [1, 2] with probability greater than 1/8, which gives the first
estimate. The second is proved in the same way. �

{ell2bound}

Lemma 5.7. Let A be an element of [n]n chosen uniformly at random, and let k,m be positive
integers with 2km ≤ n/3. Then with probability at least e−k/12800 we have that

∑
j gA( j)2 ≥

km2/1600.

Proof. For i = 1, 2, . . . , k let S i be the interval [2(i − 1)m + 1, . . . , 2im]. That is, the S i are k
consecutive intervals, each of length 2m.

Let Ei be the event that
∑

j∈S i
gA( j)2 ≥ m2/40. The plan is to apply Lemma 5.4, and for this

purpose we need to obtain a lower bound for P[Ei|E1, . . . , Ei−1]. Now E1, . . . , Ei−1 depend only
on the restriction of A to S 1∪· · ·∪S i−1 (that is, on the subsequence of A that consists of all values
that belong to S 1 ∪ · · · ∪ S i−1, so it will be enough to condition on that subsequence.

Let s = 2m(i − 1) and let r be the number of h with ah ≤ s. Then for each j ∈ [n − s] we have
that fA(s + j) = r + |{h : s < ah < s + j}| + 1

2 |{h : ah = s + j}|. Also, once we know r, the rest
of A can be thought of as an element of [s + 1, n]n−r chosen uniformly at random, which tells us
that |{h : s < ah < s + j}| + 1

2 |{h : ah = s + j}| is a sum of n − r independent random variables
X1, . . . , Xn−r, each of which takes value 1 with probability ( j − 1)/(n − s), 1/2 with probability
1/(n − s), and 0 with probability (n − s − j)/(n − s). Let X = X1 + · · · + Xn−r.
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By hypothesis, s ≤ n/3. Suppose also that m < j ≤ 2m. If r ≥ s + 3m, then fA(s + j) ≥ s + 3m,
so

gA(s + j) ≥ s + 3m − (s + j) + 1/2 ≥ m.

That is way better than we need and gives us that the event Ei holds with probability 1. So now
let us assume that r ≤ n/2.

We shall now obtain a lower bound for P[|gA(s + j)| ≥
√

m/2] under the same assumption
about j.

Let µ = ( j − 1/2)/(n − s), the mean of each Xi. Note first that since gA(s + j) differs from
fA(s + j) by a constant, the difference between gA(s + j) and its expectation is the same as the
difference between fA(s + j) and its expectation. Next, note that since µ ≤ 1/2, the variance σ2

of each Xi is at least ( j − 1)/4(n − s) ≥ m/4n. Also, E|Xi − µ|
3 is at most j/(n − s) + µ3 ≤ 2µ.

Suppose now that EX ≥ s + j − 1/2. Then by Corollary 5.6 it follows that

P[X ≥ s + j − 1/2 + σ
√

n − r] ≥
1
8
−

ρ

σ2
√

n − r
≥

1
8
−

8µn
m
√

n − r
≥

1
8
−

50
√

n
,

where we have used the bounds µ ≤ 3m/n and r ≤ n/2.
For sufficiently large n, this implies that gA(s + j) ≥ σ

√
n − r ≥

√
m/2 with probability at

least 1/10. This is true for each j between m + 1 and 2m, so the expected number of j with
gA(s + j) ≥

√
m/2 is at least m/10. Since the total number cannot be greater than m, it follows

that the probability that there are at least m/20 values of j with gA(s+ j) ≥
√

m/2 is at least 1/20.
Therefore with probability at least 1/20 we find that

∑2m
j=m+1 gA(s + j) ≥ m2/40.

If EX ≤ s + j − 1/2, then we can run the same argument but this time using a lower bound for
the probability that X ≤ s + j − 1/2 − σ

√
n − r, and we obtain the same conclusion.

We now apply Lemma 5.4 to the random variables Yi, where Yi = 1 if Ei does not hold and 0
otherwise. Our argument so far proves that P[Yi = 1|Y1, . . . ,Yi−1] ≥ 1/20. If we take c = 19/20
and ε = 1/40, then we find that the probability that Ei holds for at least 39k/40 values of i is at
most e−k/12800. Therefore, with probability at least 1 − e−k/12800 we have that Ei holds for at least
k/40 values of i, and when that is the case, we have that

∑
j gA( j)2 ≥ km2/1600. �

The larger the value of k, the weaker the lower bound we obtain for
∑

A gA( j)2 but the more
likely it is to hold. When we apply the above lemma, we shall want the probability to be bounded
above by a negative power of n, so k will be logarithmic and the lower bound will be of order
n/ log n.

5.3. Bounding the magnitude of the characteristic function away from 1. As with many
proofs of central-limit-type theorems, we shall use characteristic functions, or equivalently Fourier
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analysis. Recall that the characteristic function of (U,V) is the function

f̂ (α, β) = Ee(αU + βV),

where e(x) is shorthand for exp(2πix). We shall say more about the importance of the character-
istic function later, but for now we simply ask the reader to take it on trust that it will be useful
to us to bound | f̂ (α, β)| away from 1, except when α and β are very small. (Note that when
α = β = 0 then f̂ (α, β) = 1, so some dependence is necessary.)

Our argument will be fairly similar to the the proof in the previous section, but we need a
small modification of Lemma 5.4. Roughly speaking, Lemma 5.4 works fine except if certain
events of very low probability occur, so we now prove a variant of the lemma that shows that
low-probability events do not mess up the conclusion by too much.

{deviation2}

Lemma 5.8. Let 0 < ε < c let 0 < δ ≤ ε2k−1e−λk/16c, let X1, . . . , Xk be 01-valued random
variables, let D1, . . . ,Dk−1 be events of probability at least 1 − δ, and suppose that for every i we
have that

P[Xi = 1|X1, . . . , Xi−1,Di−1] ≤ c.

Then P[
∑

i Xi ≥ (c + ε)k] ≤ e−ε
2k/8c.

Proof. Let λ > 0. Then as in the proof of Lemma 5.4, we have that

E(eλ(X1+···+Xk)) = E(eλ(X1+···+Xk−1)EλXk)

≤
∑

t

eλtP[X1 + · · · + Xk−1 = t]E[eλXk |X1 + · · · + Xk−1 = t].

Now

E[eλXk |X1 + · · · + Xk−1 = t] ≤ E[eλXk |X1 + · · · + Xk−1 = t,Dk−1] + eλP[¬Dk−1|X1 + · · · + Xk−1 = t]

≤ E[eλXk |X1 + · · · + Xk−1 = t,Dk−1] +
eλP[¬Dk−1]

P[X1 + · · · + Xk−1 = t]
,

so the expression we are trying to bound is at most the sum of∑
t

eλtP[X1 + · · · + Xk−1 = t]E[eλXk |X1 + · · · + Xk−1 = t,Dk−1]

and
eλP[¬Dk−1]

∑
t

eλt.
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The second term we can bound above crudely by δ
∑k

t=0 eλ(t+1) ≤ 2δkeλk, while the first is at most
(1+ (eλ−1)c)Eeλ(X1+···+Xk−1) as in the previous argument. Writing θ for 2δkeλk, we therefore obtain
an upper bound of

(1 + (eλ − 1)c)Eeλ(X1+···+Xk−1) + θ ≤ (1 + (eλ − 1)c + θ)Eeλ(X1+···+Xk−1).

Since θ increases with k (when λ > 0, which it will be), this gives us an upper bound for
Eeλ(X1+···+Xk) of (1 + (eλ − 1)c + θ)k ≤ ek((eλ−1)c+θ). By Markov’s inequality and the inequality
eλ ≤ 1 + λ + λ2 again, the probability that X1 + · · · + Xk ≥ c + ε is at most ek(λ2c−λε+θ). Setting
λ = ε/2c and noting that θ ≤ ε2/8c, we obtain the result. �

We shall also make use of the following small technicality.
{quadruple}

Lemma 5.9. Let θ1, θ2, θ3 and θ4 and ε be real numbers such that the distance from θ1−θ2−θ3 +θ4

to the nearest integer is at least ε. Then |e(θ1) + e(θ2) + e(θ3) + e(θ4)| ≤ 4 − ε2.

Proof. First note that for any θ and φ with |θ − φ| ≤ 1/2 we have the inequality

|e(θ) + e(φ)|2 = 2 + 2 cos(2π(θ − φ)) ≤ 4 − (2π)2(θ − φ)2 + (2π)4(θ − φ)4/12 ≤ 4(1 − (θ − φ)2)2,

and therefore
|e(θ) + e(φ)| ≤ 2(1 − (θ − φ)2).

Since adding an integer makes no difference, we may assume that |θ1 − θ2| and |θ3 − θ4| are both
at most 1/2. It follows that

|e(θ1) + e(θ2) + e(θ3) + e(θ4)| ≤ 4 − 2(θ1 − θ2)2 − 2(θ3 − θ4)2 ≤ 4 − (θ1 − θ2 − θ3 + θ4)2,

which proves the result, since |θ1 − θ2 − θ3 + θ4| ≥ ε. �

The main result of this subsection is the following.
{fcbound}

Lemma 5.10. There is an absolute constant c > 0 with the following property. Let m ≤ cn/ log n.
Then with probability at least 1 − n−10, | f̂ (α, β)| ≤ 1 − α2m/960000 for every α such that α2m ≤
1/100.

Proof. Since (U,V) = (gA( j), j) for a randomly chosen j ∈ [n], it follows that

f̂ (α, β) = n−1
n∑

j=1

e(αgA( j) + β j).
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Note that if j1− j2 = j3− j4 and ε ≤ |α(gA( j1)−gA( j2)−gA( j3) + gA( j4))| ≤ 1/2, then for every
β we have that

|e(αgA( j1) + β j1) + e(αgA( j2) + β j2) + e(αgA( j3) + β j3) + e(αgA( j4) + β j4)| ≤ 1 − ε2/4.

This follows by setting θi = αgA( ji) + β ji and observing that since β( j1 − j2 − j3 + j4) = 0, the
distance from θ1 − θ2 − θ3 + θ4 to the nearest integer is the same as the distance from α(gA( j1) −
gA( j2) − gA( j3) + gA( j4)) to the nearest integer, which by hypothesis is at least ε. This allows us
to apply Lemma 5.9.

Our strategy now will be to prove that with high probability there are many non-overlapping
quadruples ( j1, j2, j3, j4) with j1− j2 = j3− j4 and cα

√
m ≤ |α(gA( j1)−gA( j2)−gA( j3)+gA( j4))| ≤

1/2.
To do this, we first pick k maximal such that 4km ≤ n/2 and we let S 1, . . . , S k be consecutive

intervals of length 4m: that is, S i = [4(i − 1)m + 1, . . . , 4im]. For each i, let Ei be the event that
(4m)−1|

∑
j∈S i

e(αgA( j) + β j)| ≤ 1 − α2m/4000. We shall apply Lemma 5.8 to these events (that
is, with Xi = 1 if Ei holds and 0 otherwise), and shall take Di being the event that the number of
h such that ah ∈ S 1 ∪ · · · ∪ S i is at most 3n/4. Since |S 1 ∪ · · · ∪ S i| ≤ n/2, Di has probability at
least 1 − 2e−n/8, by Hoeffding’s inequality.

It remains to obtain a lower bound for the probability P[Ei|E1, . . . , Ei−1,Di−1]. We shall do
this as follows. Let s = 4m(i − 1) and let r be the number of h with ah ≤ s. Since Di−1 holds,
r ≤ 3n/4.

Let t be the number of h such that ah ≤ s + j + 3m. If we condition on r, then the expected
value of t is r + ( j + 3m)(n− r)/(n− s) ≤ r + 8m. Since t ≥ r, it follows from Markov’s inequality
that t ≤ r + 16m ≤ 4n/5 with probability at least 1/2.

Let us condition on the value of t and suppose that this inequality holds. Then

fA(s + j + 4m) = t + |{h : s + j + 3m < ah < s + j + 4m}| +
1
2
|{h : ah = s + j + 4m}|,

which is a sum of n− t independent random variables X1, . . . , Xn−t, each of which takes the value
1 with probability (m − 1)/(n − s − j − 3m), 1/2 with probability 1/(n − s − j − 3m), and 0 with
probability (n − s − j − 4m)/(n − s − j − 3m).

As in the proof of Lemma 5.7, we shall now apply Corollary 5.6 to these random variables.
Back-of-envelope calculations similar to those of Lemma 5.7 give the bounds ρ ≤ 4m/n and
σ2 ≥ m/4n. Therefore, writing X for X1 + · · · + Xn−t, we have that

P[X ≥ M + σ
√

n − t] ≥
1
8
−

ρ

σ2
√

n − t
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and
P[X ≤ M − σ

√
n − t] ≥

1
8
−

ρ

σ2
√

n − t
.

Note that ρ/(σ2
√

n − t) ≤ 50/
√

n (since t ≤ 4n/5), so for n sufficiently large, both these proba-
bilities are at least 1/10.

Since fA(s + j) − gA(s + j) = s + j − 1/2 for every j ∈ [4m], we have

gA(s+ j)−gA(s+ j+m)−gA(s+ j+2m)+gA(s+ j+3m) = fA(s+ j)− fA(s+ j+m)− fA(s+ j+2m)+ fA(s+ j+3m)

for every j ∈ [m].
Therefore, if α( fA(s+ j)− fA(s+ j+m)− fA(s+ j+2m)) = θ, then there is a probability of at least

1/10 that α(gA(s+ j)−gA(s+ j+m)−gA(s+ j+2m)+gA(s+ j+3m)) ∈ [θ+ασ
√

n − t, θ+2ασ
√

n − t]
and also a probability of at least 1/10 that α(gA(s+ j)−gA(s+ j+m)−gA(s+ j+2m)+gA(s+ j+3m)) ∈
[θ − 2ασ

√
n − t, θ − ασ

√
n − t].

As we have shown, the probability that t ≤ 4n/5 is at least 1/2. Assuming that this is the case,
we have that

√
m/6 ≤ σ

√
n − t ≤ 2

√
m. Because α

√
m ≤ 1/10, it follows in particular that

ασ
√

n − t ≤ 1/5.
From this it follows that with probability at least 1/20, the distance from α(gA(s + j) − gA(s +

j + m) − gA(s + j + 2m) + gA(s + j + 3m)) to the nearest integer equals its modulus, which is at
least α

√
m/6. And if that holds, then by Lemma 5.9 it follows that

(1/4)|e(αgA( j1) + β j1) + e(αgA( j2) + β j2) + e(αgA( j3) + β j3) + e(αgA( j4) + β j4)| ≤ 1 − α2m/24

when we take j1 = s + j, j2 = s + j + m, j3 = s + j + 2m and j4 = s + j + 3m.
Therefore, the expected number of j ∈ [m] for which the above upper bound holds is at least

m/20. It follows that with probability at least 1/40 it holds for at least m/40 values of j. And in
that case the event Ei holds, by the triangle inequality.

Thus, the probability that Ei holds, given E1, . . . , Ei−1 and Di−1 is at least 1/40. Lemma
5.8 now implies that the probability that Ei holds for fewer than k/80 values of i is at most
e−k/802.8 = e−k/51200. If Ei holds for at least k/80 values of i, then since 4km ≥ n/3, we have that
n−1|

∑n
j=1 e(αgA( j) + β j)| ≤ 1 − α2m/960000, as claimed. �

{smalloutsidebox}

Corollary 5.11. Let A be a random element of [n]n and let f̂ be the characteristic function of the
random variable (U,V), which is uniformly distributed on the set {(gA( j), j− (n + 1)/2) : j ∈ [n]}.
Then with probability at least 1 − 3n−6 we have the bound

| f̂ (α, β)|n ≤ n−10

for every (α, β) ∈ [−1/2, 1/2]2 such that either |α| ≥ 105
√

log n/n or |β| ≥ 223
√

log n/n3/2.
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Proof. By Lemma 5.10 we have with probability at last 1 − n−9 that | f̂ (α, β)| ≤ 1 − α2m/960000
for every α, β and every m ≤ n/20 log n such that α2m ≤ 1/100. If |α| ≥ 100000

√
log n/n,

then we can pick m ≤ n/20 log n such that α2m/960000 ≥ 20 log n/n, giving us that | f̂ (α, β)| ≤
1 − 20 log n/n. But then | f̂ (α, β)|n ≤ (1 − 20 log n/n) ≤ n−10, as claimed.

Now suppose that |α| ≤ 100000
√

log n/n. By the proof of Lemma 5.3 we have that every gA( j)
has absolute value at most 6

√
n log n.

Suppose first that |β| ≤ n−1/2 and let m = bn/2c. For each j ≤ m let us obtain an upper bound
for |e(gA( j)α + jβ) + e(gA( j + m)α + ( j + m)β)|. By our bound on |α|, we have that |gA( j)α| and
|gA( j + m)α| are both at most 600000 log n/

√
n. It follows that

|gA( j)α + jβ − (gA( j + m)α + ( j + m)β)| ≥ n|β|/3 − 1200000 log n/
√

n.

Our lower bound for |β| implies that this is at least n|β|/6. We also have that

|gA( j)α + jβ − (gA( j + m)α + ( j + m)β)| ≤ n|β|/2 + 120000 log n/
√

n ≤ n|β| ≤ 1/2.

The proof of Lemma 5.9 included the inequality that |e(θ) + e(φ)| ≤ 2(1− (θ−φ)2) when |θ−φ| ≤
1/2, so using this and the two bounds just noted, we find that

|e(gA( j)α + jβ) + e(gA( j + m)α + ( j + m)β)| ≤ 2(1 − n2β2/36),

from which it follows that | f̂ (α, β)| ≤ 1 − n2β2/40 when n is sufficiently large. (The slight
worsening of the absolute constant is to allow for the fact that n may be odd, in which case we
do not get an exact partition of [n] into pairs { j, j + m}.)

Using our lower bound on |β| again, we find that n2β2/40 ≥ 240 log n/n, from which it follows
readily that | f̂ (α, β)|n ≤ n−10.

If 1/4 ≥ |β| ≥ n−1/2, then the proof is similar, but this time we choose m maximal such that
m|β| ≤ 1/4. Note that m ≤ n/2 if we do this. It follows that we can partition [n] into at least n/3
disjoint pairs { j, j + m}. For each such pair we have that

|gA( j)α + jβ − (gA( j + m)α + ( j + m)β)| ≥ m|β| − 120000 log n/
√

n ≥ 1/5

and also

|gA( j)α + jβ − (gA( j + m)α + ( j + m)β)| ≤ m|β| + 120000 log n/
√

n ≤ 1/3,

when n is sufficiently large. It follows that

|e(gA( j)α + jβ) + e(gA( j + m)α + ( j + m)β)| ≤ 2(1 − 1/25),

and hence that | f̂ (α, β)| ≤ 74/75, which for sufficiently large n gives us that | f̂ (α, β)|n ≤ n−10.
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If 1/4 ≤ |β| ≤ 1/2 then we can argue very similarly but taking m = 1. We can bound | f̂ (α, β)|
away from 1 by an even better absolute constant and the required estimate holds with a lot of
room to spare. �

6. A local central limit theorem for (U,V)

At this point, we note that if we choose a random n-sided die A, then with probability 1− o(1)
(where the o(1) term is a power of n) we have the conclusions of the main results of the previous
section: that is, Lemma 5.3 and Corollary 5.11. The first of these gives an upper bound for ‖U‖∞
and the second shows that | f̂ (α, β)|n is small when (α, β) lie outside a small box about the origin.

Given these properties, it is now reasonably easy to follow the standard Fourier method to
prove a local central limit theorem for the sum of n independent copies of (U,V) that will be
strong enough and explicit enough to enable us to prove our main result. So let us fix an n-
sided die A that has the properties, and let (U,V) be the random variable defined earlier that we
associate with A.

Let us briefly recall a few standard facts about characteristic functions. One is that if f̂ is
the characteristic function of (U,V), then the characteristic function of the sum of n independent
copies of (U,V) is f̂ n. This follows from the convolution law in Fourier analysis (since if we
regard (U,V) as a function f from Z2 to R, then f̂ is its Fourier transform, and the function
corresponding to the distribution of the sum of n independent copies of (U,V) is the n-fold
convolution of f ). For similar reasons we have the inversion formula

P[(U,V) = (x, y)] =

∫
T2

f̂ (α, β)ne(−αx − βy) dα δβ.

We shall also need to know that the characteristic function of (U,V) relates in a simple way to
its moments. We have that

∂r+s

∂rα ∂sβ
f̂ (α, β) = (2πi)r+sE(UrV se(αU + βV)),

and evaluating this at zero we get (2πi)r+sE(UrV s).
Writing ∂1 and ∂2 for the operators of partially differentiating with respect to the first and

second variables, respectively, we shall use the following estimate, which follows from Taylor’s
theorem and the observation about the partial derivatives. (We also use the fact that (U,V) has
mean (0, 0).)

{taylor}

Lemma 6.1. Let f be as above. Then

f̂ (α, β) = 1 − 2π2(α2EU2 + 2αβEUV + β2EV2) + R(α, β),
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where |R(α, β)| ≤ 4π3

3 (|α|‖U‖∞ + |β|‖V‖∞)3. �

From Lemma 6.1, we see that for small α, β, f̂ (α, β)n is approximately equal to exp(−q(α, β)),
where q(α, β) = α2EU2 + 2αβEUV + β2EV2, which is a positive semidefinite quadratic form in α
and β. Next, we prove a small technical lemma in order to help us determine sufficient conditions
for this approximation to be a good one.

{expestimate}

Lemma 6.2. For every positive integer n and every pair of real numbers x, y such that x2 ≤ 1/4n
and |y| ≤ 1/4n, we have the inequality

exp(−nx) exp(−n(|y| + 2x2 + 2y2)) ≤ (1 − x + y)n ≤ exp(−nx) exp(n(|y| + 2x2 + 2y2)).

It follows that the ratio of (1− x+y)n to exp(−nx) lies between 1−4n(|y|+ x2) and 1+4n(|y|+ x2).

Proof. For every u with |u| ≤ 1/2, we have the inequality −u − u2 ≤ log(1 − u) ≤ −u + u2, which
implies that exp(−n(u + u2)) ≤ (1 − u)n ≤ exp(−n(u − u2)). Applying this with u = x − y and
noting that u2 ≤ 2(x2 + y2), we obtain the first inequality.

Also, since nx2 and n|y| are both at most 1/4, n(|y| + 2x2 + 2y2) ≤ 1/2 and 2y2 ≤ |y|. But when
|w| ≤ 1/2 we have 1 − 2|w| ≤ e−w ≤ 1 + 2|w|, and the second inequality follows. �

Combining the above lemmas with Corollary 5.11, we obtain the following result, which tells
us that in a suitable sense f̂ n is approximated by a Gaussian.

{gaussianapproximation}

Lemma 6.3. Let f̂ be the characteristic function of (U,V). Define a function h : R2 → R by
setting h(α, β) = f̂ (α, β)n when |α| ≤ 1/2 and |β| ≤ 1/2 and h(α, β) = 0 otherwise. And let g be
the two-dimensional Gaussian

g(α, β) = exp(−2π2n(α2EU2 + 2αβEUV + β2EV2)).

Then ‖h − g‖1 ≤ 2123(log n/n)4.

Proof. Since the conclusion of Lemma 5.3, is satisfied, we have ‖U‖∞ ≤ 6
√

n log n. We also
have that ‖V‖∞ ≤ n for trivial reasons.

It follows that for any α and β we have

2π2(α2EU2 + 2αβEUV + β2EV2) ≤ 2π2(6α
√

n log n + βn)2 ≤ 1440α2n log n + 40β2n2.

Also, in Lemma 6.1 we have that

R(α, β) ≤ 50(6|α|
√

n log n+|β|n)3 ≤ 200(216|α|3(n log n)3/2+|β|3n3) ≤ 216|α|3(n log n)3/2+28|β|3n3.
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Setting Q(α, β) = 2π2(α2EU2 + 2αβEUV + β2EV2), so g(α, β) = exp(−nQ(α, β)), we have that

f̂ (α, β) = 1 − Q(α, β) + R(α, β),

and therefore by Lemma 6.2 that

g(α, β)(1 − 4n(|R(α, β)| + Q(α, β)2)) ≤ f̂ (α, β)n ≤ g(α, β)(1 + 4n(|R(α, β)| + Q(α, β)2)),

provided that Q(α, β) ≤ 1/2
√

n and |R(α, β)| ≤ 1/4n.
For Q(α, β) to be at most 1/2

√
n it is enough if 1440α2n log n ≤ 1/4

√
n and 40β2n2 ≤ 1/4

√
n,

and for that it is enough if |α| ≤ 1/80n3/4
√

log n and |β| ≤ 1/16n5/4. For R(α, β) to be at most
1/4n it is enough if 216|α|3(n log n)3/2 ≤ 1/8n and 28|β|3n3 ≤ 1/8n, and for that it is enough if
|α| ≤ 1/100n5/6

√
log n and |β| ≤ 1/16n4/3. The second pair of conditions is more stringent, so

provided that they hold, we have the required bounds on Q(α, β) and R(α, β).
To bound ‖h − g‖1, we shall look at the contribution within a small box and outside it. Corol-

lary 5.11 tells us that | f̂ (α, β)|n ≤ n−10 when |α| ≥ 105
√

log n/n or |β| ≥ 223
√

log n/n3/2. For
sufficiently large n, 105

√
log n/n ≤ 1/100n5/6 and 223

√
log n/n3/2 ≤ 1/16n4/3. It follows that on

the boundary of the box B = [−105
√

log n/n, 105
√

log n/n] × [−223
√

log n/n3/2, 223
√

log n/n3/2]
we have that g(α, β) ≤ (1 − 4n(|R(α, β)| + Q(α, β)2))−1n−10. For sufficiently large n this implies
that g(α, β) ≤ 2n−10 everywhere on the boundary.

Let G(t) equal the integral of g(α, β) round the boundary of the box tB. Note that for each
(α, β) on the boundary of B, we have that g(tα, tβ) is a Gaussian in t that takes the value at most
n−10 when t = 1. Therefore, it is bounded above by exp(−10t2 log n). The perimeter of B is at
most 106

√
log n/n (again assuming that n is sufficiently large), so∫

(α,β)<B
g(α, β) dα dβ ≤ 106

√
log n
n

∫ ∞

1
t exp(−10t2 log n) dt ≤ 50000n−11.

Since h = 0 outside [−1/2, 1/2]2 and |h| ≤ n−10 outside B, we also have that∫
(α,β)<B

|h(α, β)| dα dβ ≤ n−10.

For all (α, β) we have that | f (α, β)n| ≤ 1. Therefore, our estimate for the ratio of g to f implies
that for all (α, β) ∈ B we have that

|g(α, β) − f̂ (α, β)n| ≤ 4n(|R(α, β)| + Q(α, β)2).

Inside B, one can check that Q(α, β) ≤ 1012(log n)2/n for n sufficiently large, and hence that
Q(α, β)2 ≤ 1024(log n)4/n2. Also, |R(α, β)| ≤ 277(log n)3/n3/2. So, for sufficiently large n, we
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have the bound
|g(α, β) − f̂ (α, β)n| ≤ 280(log n)3/n3/2

everywhere in B. Since B has area at most 242 log n/n5/2, it follows that the contribution to ‖g−h‖1
from inside B is at most 2122(log n)4/n4.

Combining these estimates gives us the bound stated (as always, assuming that n is sufficiently
large). �

In the statement of the next result, we refer to a “discrete Gaussian”. By this we mean a
function defined on Z2 with a formula of the form f (x, y) = c exp(−λq(x, y)) for some positive
semidefinite quadratic form q.

{discretegaussian}

Corollary 6.4. There is a discrete Gaussian G such that

P[(U,V) = (x, y)] −G(x, y)| ≤ 2123(log n/n)4

for every (x, y) ∈ Z2. Furthermore, P[(U,V) = (0, 0)] ≤ 243 log n/n5/2.

Proof. We have

P[(U,V) = (x, y)] =

∫
T2

f̂ (α, β)ne(−αx − βy) dα dβ =

∫
R2

h(α, β)e(−αx − βy) dα dβ .

By Lemma 6.3 and the fact that e(−αx− βy) has modulus 1 for every x, y, if we replace h by g on
the right-hand side, the difference to the integral is at most 2123(log n/n)4. But

∫
R2 g(α, β)e(−αx−

βy) dα dβ has a Gaussian dependence on (x, y), since it is the Fourier transform of a Gaussian
(the Gaussian being defined on R2 even if we are evaluating its Fourier transform at points of
Z2). This proves the first part.

For the second part, recall from the proof of Lemma 6.3 that the integral of h outside the box
B is at most n−10 and that B has area at most 242 log n/n5/2. It follows that

P[(U,V) = (0, 0)] =

∫
R2

h(α, β) dα dβ ≤ 243 log n/n5/2.

when n is sufficiently large. (Indeed, this is a bound for P[(U,V) = (x, y)] for all (x, y).) �

7. The main theorem

We are almost ready to prove the main theorem. However, a uniform bound on the probabilities
is not quite enough for our purposes. As is customary, we need to combine it with tail estimates.
However, this is straightforward.

{tail}

Lemma 7.1. P[|U∗n| ≥ 6Cn
√

log n] ≤ 2 exp(−2C2).
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Proof. The distribution of U∗n is given by the sum of n independent copies of U, which has mean
zero. Since ‖U‖∞ ≤ 6

√
n log n, Hoeffding’s inequality gives us the required estimate. �

Theorem 7.2. The probability that A beats another random die is 1
2 + o(1).

Proof. As remarked earlier, we will be done if we can prove that

P[U∗n > 0|V∗n = 0] =
1
2

+ o(1).

Recall first that P[V∗n = 0] ≥ n−3/2/4, by Lemma 5.2.
Next, note that by Corollary 6.4 we have for every x that

|P[(U,V)∗n = (x, 0)] − P[(U,V)∗n = (−x, 0)]| ≤ 2124(log n/n)4,

since G is an even function. We also have that P[(U,V) = (0, 0)] ≤ 243 log n/n5/2.
Thirdly, Lemma 7.1 gives us that P[|U∗n| > 12n log n] ≤ 2n−8.
Putting these estimates together, we find that

|P[U∗n > 0 ∧ V∗n = 0] − P[U∗n < 0 ∧ V∗n = 0]| ≤ (12n log n)(2124(log n/n)4 ≤ 2128(log n)5/n3,

and therefore that

|P[U∗n > 0|V∗n = 0] − P[U∗n < 0|V∗n = 0]| ≤ 2130(log n)5/n3/2.

We also have that
P[U∗n = 0|V∗n = 0] ≤ 245 log n/n.

The result follows. �

As observed in Section 2, this statement is equivalent to Conjecture 1.2 for the balanced se-
quences model, and the proof also yields Conjecture 1.1 for this model.
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