I’m going to try the same exercise with Curt McMullen’s talk about Mirzakhani’s work that I did with Ofer Zeitouni’s about Hairer: that is, I’ll begin by seeing what I can remember if I don’t look at my notes. However, I remember disoncertingly little, and what I do remember is somewhat impressionistic.

The most concrete thing I remember (without being 100% sure I’ve got it right) is that one of Mirzakhani’s major results concerns counting closed geodesics in Riemann surfaces. A geodesic is roughly speaking a curve that feels like a straight line to an inhabitant of the surface. Another way of putting it is that if you take two points that are close together on a geodesic, then the part of the geodesic between those points is the shortest curve that joins those two points. (Hmm, on writing that I feel that I’ve made an elementary mistake of exposition, in that I have assumed that you know what a Riemann surface is, and then gone to a little trouble to say what a geodesic is, when not many people will know the former without also knowing the latter. To atone for that, let me add a link to the Wikipedia article on Riemann surfaces, though I’m afraid that article is not much good for the beginner. A beginner’s definition, not precise at all but perhaps adequate for the purposes of reading this post, is that a Riemann surface is a surface like a sphere or a torus, but with some very important extra structure that comes from the fact that each little patch of surface looks like a little patch of the complex plane.)

Read the rest of this entry »