What a load of tosh.

This blog well out of date, as Michael Gove is long gone as education minister. Clearly the originator..Gowers…doesn’t keep it current.

Hmc

Sent from Windows Mail

]]>http://www.ocr.org.uk/Images/174107-unit-h866-02-critical-maths-sample-assessment-material.pdf

The questions are less open-ended than I would like, but given the way that exam boards operate — they care a lot about precise mark schemes etc. — it wasn’t realistic to hope for that.

]]>Sent from Windows Mail

]]>The background: http://mei.org.uk/l3_probsolv

The resulting course: http://www.ocr.org.uk/qualifications/by-type/core-maths/

]]>Regards

H. McCreight

Sent from Windows Mail

]]>Imagine a hypothetical experiment where scientists are testing for precognition. A supposed psychic correctly predicts only 100 out of 1000 coin tosses. What does this suggest?

Interesting extensions of this problem include: What if they get 500 correct, but in alternating order? If we are statistically analysing the psychic’s guesses xored with 00000… or 11111… or 10101010…, does it make sense to analyse them xored with a random sequence? What about xoring the psychic’s guesses with a doctored sequence so that we always conclude that there is some psi phenomenon going on, even when there isn’t. That shouldn’t be allowed, but why?

If an outcomes with less than 500 correct guesses, and outcomes with more than 500 correct guesses both suggest a supernatural phenomenon, then why do we conclude in real life that these phenomena don’t exist? What if we are dealing with a die which has six outcomes instead of a coin’s two? Is there a general rule for making sense of all this?

Also: Tapei 101 has a giant metal ball in it. Why is this a good idea, and how does one decide on the design of the pendulum for a given tower?

In terms of geometry, a discussion of drawing in perspective could be interesting.

I can’t think of anything good for trigonometry other than triangulating the positions of stars which was already brought up. I know that navigating at sea used to require lots of trig. Probably still does, but computers do it all.

I hope that this course gets made, it’s a great idea.

]]>Zeno

]]>Its all very academic and has no real end point……. ]]>

you have to buy the actual books. i’m pretty sure there’s no way you can get the books by download. if you contact the authors however;

Walter Affolter

w.affolter@bluewin.ch

and

Beat Wälti

http://www.phbern.ch/ueber-die-phbern/institute/iwb/dozierende/beatwaelti0.html

I’m sure they can help you out.

Cheers.

]]>JOHN BIBBY (“Maths in a Van” – I am interested in developing “Maths is all around you” ideas for community and adult learning out of school)

]]>I’m working and studying in Switzerland and haven’t seen the English maths text books at all. I thought you might be happy to hear that one of the mandatory texts for maths students in years 7-9 is called mathbu.ch (http://www.mathbu.ch) and in their edition for 7th grade they introduce the Fermi Problems in the sixth chapter (or setting as they like to call them). Then, throughout the rest of the series, Fermi Problems are scattered related to the setting’s content. Definitely worth a look. The texts are of course in German, but I’m sure if you got in touch with their authors they would be able to talk to you about their project.

For the record they offer a really creative and excellent model for teaching mathematics as a whole in the series. I use their books for my students and it just opens up the ideas behind mathematics so well that our maths lessons are equally full of mathematical discussions as they are well-differentiated maths exercises. Certainly a major improvement on the maths I learnt at school in my view.

Cheers,

Robin from near Lucerne ;>

I must say I agree with lots of what is said here:

a) We need to get our kids to THINK not just APPLY.

b) Why should a course in Maths not be assessed like English assesses its essays, if they can we can….so open ended is possible.

c) Some of these problems are just great fun and clever and interesting.

Now for my concerns.

If I am a well qualified, passionate and pretty successful Maths teacher and I am having to think about these problems…how do I get my C to even A grade GCSE mathematicians to start thinking about these problems.

You must understand I am not asking how to solve the problems….that’s the fun part for me to research and you’d find most Maths teachers agreeing. I am asking “how do I teach my average ability sixth formers how to apply themselves to these problems”.

I tell you now…walking in and posing the problem and expecting a worthwhile discussion on 90% of these problems ain’t happening. It will take a huge amount of preparation. In the two years since this blog was posted. What has been done and said about that problem.

Lets end the eternal ….here’s a fun application…academic discussion on the concept.

Lets have some real discussion about how passionate capable Maths teachers make this accessible to our kids!

This post from the estimable “Gowers’s Weblog” passed me by when it was posted in 2012, but I saw the link on Twitter and decided to repost it here because it’s still topical ]]>