I’ve just checked using this binomial distribution calculator that if the probability is 6.55% and you look for the probability of exactly 7 successes out of 14 (which gives a good approximation to the probability of at least 7 successes), then you get about 1 in 10,000. I think the 6.55% is probably a slight underestimate as well. If you go for 10% then it’s more like 1 in 6000.

]]>I can see, that I am not the only one left wandering as to why cheer Bhargava.

]]>Gerhard “Yes, I Was At ICM2014″ Paseman, 2014.08.27

]]>I find sampling theory fascinating. So much so, that I did my PhD research on it years ago. I got a degree in engineering but it could have been as well a PhD in applied math since sampling is what it was all about.

If it weren’t because I have made a few controversial remarks in a blog of an influential Fields Medalist, I wouldn’t mind to provide a link to my own work :).

I stopped working on sampling as soon as I graduated, but I still try to follow as much as I can, that’s why I was eager to learn about what Emmanuel Candès had to say at the ICM.

I know that most mathematicians by training consider applied math a sort of waste, but in this day and age, applied math is more relevant than it has ever been given the complexity of the systems we build and the amount of information these systems need to process.

Besides, the beauty of mathematics from my point of view, and here comes yet another controversial remark, is that mathematical concepts are as real as the physical world, only the physical world is a “subset” of all the mathematical reality, the subset that our sensors perceive. Richard Feynman said that nature speaks the language of mathematics, which is true, but I think it is because nature is a subset of the larger mathematical realm: God himself.

]]>